خودکار سازی و تسریع فرآیندهای کاری

به منظور شفاف‌سازی بیشتر در چنین حوزه‌ای، در بخش نخست این مقاله، به بررسی برخی از ابعاد نظری هوش مصنوعی می‌پردازد و در بخش دوم نیز جهت هموارسازی ورود مدیران اجرایی به این حوزه، نکاتی ضروری را از نظر می‌گذراند.

در میانه هیاهویی که حول مبحث هوش مصنوعی مولد، از زمان انتشار چت جی‌پی‌تی، کلوود، بارد،

میدجرنی (Midjourney) و دیگر ابزارهای تولید محتوا، به‌‌‌پا شده است؛ مدیران اجرایی شرکت‌ها کنجکاوند که بدانند چنین هیاهویی از گزافه‌گویی‌های فناوری سر برآورده یا فرصتی است واقعی برای تغییر بازی؟ و چنانچه دومی باشد، چه سودی برای کسب و کار آنها دارد؟

نسخه عمومی چت جی‌‌‌پی‌‌‌تی ظرف دو ماه به ۱۰۰میلیون کاربر رسید. چنین اقبالی، هوش مصنوعی مولد را به نحو بسیار محسوسی به نرم‌‌‌افزاری به سرعت توسعه‌یابنده تبدیل کرد. از سوی دیگر، دسترس‌پذیری بلامانع آن و راحتی کار با آن برای طیف وسیعی از کاربران از هر سن و سالی یا درجه تحصیلی، هوش مصنوعی مولد را ازدیگر پلتفرم‌های هوش مصنوعی متمایز ساخته است.

چنین تمایزی نیز به این دلیل میسر شده است که چت‌بات‌های هوش مصنوعی مولد (نظیر چت‌بات‌های صوتی و متنی) توسط مدل‌های پایه‌ای ‌ساز وکار یافته‌اند که شکلی از شبکه‌های عصبی توسعه‌یابنده محسوب می‌شوند؛ که مسیرهای یادگیری و فیدبک‌گیری‌شان مانند شبکه نورونیِ یادگیری در انسان، براساس مقادیر وسیعی از داده‌های ساختارنیافته و بدون چارچوب، آن هم در قالب‌هایی متنوع، گسترش یافته و تکمیل می‌شود. این ویژگیِ خودتوسعه‌یابندگی در مدل‌های پایه است که سبب چندمنظوره شدن کاربری آنها در مقایسه با مدل‌های هوش مصنوعی سابق  (که اغلب کاربری‌ای محدود داشتند) شده است.

یک مدل پایه می‌تواند، خلاصه‌ای اجرایی، برای یک گزارش فنی ۲۰هزار کلمه‌‌‌ای در مورد محاسبات کوانتومی ایجاد کند؛ پیش‌نویس یک استراتژی ورود به بازار برای یک کسب و کار هرس‌کردن درختان بنویسد و همین‌طور پنج دستور غذایی مختلف برای ۱۰ ماده اولیه موجود در یک یخچال را ارائه کند. بنابراین، هوش مصنوعی مولد نه‌تنها می‌تواند فضاهایی جدید را به روی حوزه‌های کسب‌و‌کاری بگشاید؛ بلکه ظرفیت این را نیز دارد که فرآیندهای سابق را مقیاس‌بندی کرده، تسریع کرده و بهبود ببخشد. البته این چند‌منظوره بودن نقطه ضعفی نیز دارد و آن پایین آمدن دقت عملیاتی است؛ ریسکی که مدیران اجرایی باید همواره درکار با هوش مصنوعی مولد مراقب آن باشند. کارآمدترین شیوه بهره‌گیری از هوش مصنوعی مولد نیز، تعبیه آن در ابزارهای روزمره (مثل ایمیل یا نرم‌‌‌افزار پردازش کلمه) است که به شکل قابل ملاحظه‌ای موجب افزایش بهره‌وری آن ابزارها می‌شود.  از آنجا که هدف این مقاله، کمک به مدیران اجرایی و تیم‌‌‌هایشان برای گام نهادنی ایمن در مسیر استفاده از هوش مصنوعی مولد و اعتبار‌آفرینی برای آن است؛ در ابتدا قدری درباره مبادی اولیه هوش مصنوعی مولد صحبت می‌شود.

این بخش می‌تواند به مدیران کمک کند که آشنایی‌ای اجمالی، با وضعیت به سرعت گسترش‌یابنده هوش مصنوعی و گزینه‌های فنی موجود در این زمینه داشته باشند و در بخش دوم نیز، به طور کلی به بررسی نقش حیاتی مدیرعامل در تثبیت یک موقعیت سازمانی موفق در مسیر بهره‌گیری از هوش مصنوعی مولد پرداخته  خواهد شد.

 مبادی اولیه

در این بخش، مروری اجمالی بر گستره کاربردی هوش مصنوعی مولد و تفاوت آن با هوش مصنوعی سنتی خواهیم داشت.  هوش مصنوعی مولد می‌تواند جهت خودکارسازی، تقویت و تسریع فرآیندهای کاری مورد استفاده قرار گیرد. البته متناسب با منظر این مقاله، تمرکز بر مسیرهایی است که هوش مصنوعی مولد بتواند موجب ارتقای ظرفیت‌های نیروی کاری انسانی شود تا جایگزینی برای آن. هر چند، بیش از هر چیز، این چت‌بات‌های مولد متن مثل جی‌پی‌تی هستند که توجه همگان را به خود جلب کرده‌اند؛ اما هوش مصنوعی مولد، قابلیت‌های بیشتری در زمینه‌های متنوع محتوایی نظیر تصاویر، ویدئو، صدا و کدهای رایانه‌ای می‌تواند داشته باشد که چندان به آنها پرداخته نشده است. برای مثال، کارکردهای سازمانی مختلفی از جمله طبقه‌‌‌بندی، ویرایش، خلاصه‌‌‌سازی، پاسخگویی به سوالات و پیش‌نویسی محتوای جدید نیز در زمره چنین قابلیت‌هایی محسوب می‌شوند:

  طبقه‌بندی کردن:    

  یک تحلیلگر آشکارساز کلاهبرداری می‌تواند مکتوبات تراکنش و اسناد مشتری را به یک ابزار هوش مصنوعی مولد بدهد تا تراکنش‌های جعلی را شناسایی کند.

  مدیر خدمات مشتری می‌تواند از هوش مصنوعی مولد برای دسته‌بندی فایل‌های صوتی تماس مشتریان، آن هم بر اساس سطوح رضایتمندی‌شان، استفاده کند.

 ویرایش کردن :

  یک کپی رایتر می‌تواند از هوش مصنوعی مولد برای تصحیح و تدقیق تطابق‌های دستوری استفاده کند.

  طراح گرافیک می‌تواند یک لوگوی از مد افتاده را از یک تصویر حذف کند.

  خلاصه کردن:

   یک دستیار تولید می‌تواند با تلخیصی از ساعت‌ها فیلم خام، یک ویدئوی برجسته تولید کند.

  یک تحلیلگر کسب‌و‌کار می‌تواند یک نمودار خلاصه‌ نکات کلیدی از ارائه یک مدیر اجرایی ایجاد کند.

  پاسخگویی به سوالات:

  کارکنان یک شرکت تولیدی می‌توانند از یک «کارشناس‌مجازی» هوش مصنوعی در مورد رویه‌های عملیاتی، سوالات فنی بپرسند.

  یک مصرف‌کننده می‌تواند از چت‌بات در مورد نحوه مونتاژ یک مبلمان جدید سوال بپرسد.

  پیش‌نویس:

  یک برنامه‌نویس می‌تواند با استفاده از هوش مصنوعی مولد، خطوط کامل کد یا مسیرهای پیشنهادی برای تکمیل خطوط جزئی کدهای موجود را توسعه دهد.

   یک مدیر بازاریابی می‌تواند از هوش مصنوعی مولد برای پیش‌نویس نسخه‌های مختلف پیام‌رسان کمپین استفاده کند.

 تفاوت هوش مصنوعی مولد با انواع هوش مصنوعی

چنان‌که از نامش پیداست، وجه تمایز اصلی هوش مصنوعی مولد با انواع پیشین آن؛ توانایی آن در تولید داده‌های جدید بر اساس داده‌های ساختار‌نیافته و خام است. همان‌طور که پیش از این نیز اشاره شد، فناوری زیربنایی آن، دسته‌‌‌ای از شبکه‌‌‌های عصبی مصنوعی به نام مدل‌‌‌های پایه است. الگوی الهامی این شبکه‌های عصبی مصنوعی نیز برگرفته از میلیاردها نورونی است که در مغز انسان پیوند یافته‌اند و به شیوه به اصطلاح یادگیری عمیق، آموزش می‌یابند.  یادگیری‌ای که در آن لایه‌های زیاد و عمیقی از شبکه عصبی درگیر هستند. این شیوه از یادگیری، به بسیاری از پیشرفت‌‌‌های اخیر در هوش مصنوعی کمک کرده است.

 استفاده مسوولانه از هوش مصنوعی مولد

استفاده از هوش مصنوعی مولد، ریسک‌های مختلفی به همراه دارد که بهتر است مدیران اجرایی از همان ابتدا، در پی الگوسازی‌هایی برای کاهش آن ریسک‌ها در تیم‌ها و فرآیندهایشان باشند. آن هم نه فقط به منظور برآوردن الزامات نظارتی تحول‌گرایانه، بلکه برای حفاظت از تجارتشان و همین‌طور جلب اعتماد دیجیتالی مصرف‌کنندگان. که در همین راستا، در ادامه توصیه‌هایی برای مدیران اجرایی ارائه خواهد شد.

  انصاف ‌‌‌:مدل‌ها ممکن است به دلیل داده‌های آموزشی ناقص یا تصمیمات اتخاذ‌شده توسط مهندسان طراح، به سوگیری الگوریتمی مبتلا شده و از خط‌انصاف و تعادل خارج شوند.

  مالکیت بر ایده : داده‌های آموزشی و خروجی‌های مدل می‌توانند، ریسک‌های قابل‌توجهی در حقوق مالکیتِ بر ایده ایجاد کنند از جمله نقض حق کپی‌رایت، علامت تجاری، ثبت اختراع یا موارد دیگری که از نظر قانونی محافظت می‌شوند. بنابراین حتی در زمان استفاده از ابزارهای هوش مصنوعی مولد، سازمان‌ها باید بدانند که چه داده‌های آموزشی‌ای در

ورودی و خروجی این ابزار مورد استفاده قرار گرفته‌اند.

  حفظ حریم خصوصی : نگرانی‌هایی ممکن است در این باره وجود داشته باشد که اطلاعات وارد شده کاربران که بعدا به خروجی‌های مدل ختم می‌شوند، سبب شناسایی کاربر شوند. هوش مصنوعی مولد می‌تواند برای ساخت و انتشار محتوایی مخرب مانند اطلاعات نادرست، جعل صدا و تصویر اشخاص و نفرت‌پراکنی مورد استفاده قرار گیرد.

  امنیت: هوش مصنوعی مولد همچنان ممکن است، جهت تسریع حملات سایبری و ارائه خروجی‌های مخرب مورد استفاده قرار گیرد. برای مثال: از طریق تکنیکی به نام تزریق سریع، یک شخص ثالث به مدل دستورالعمل‌های جدیدی می‌دهد تا مدل را فریب داده و خروجی دیگری برخلاف خواسته تولیدکننده مدل و کاربر نهایی ارائه دهد.

  توضیح‌پذیری: هوش مصنوعی مولد به شبکه‌های عصبی با میلیاردها پارامتر متکی است که توانایی انسان را در چگونگی تبیین پاسخ داده شده به چالش می‌کشد.

  قابلیت اطمینان: مدل‌ها می‌توانند پاسخ‌های متفاوتی به اعلان‌های یکسان بدهند و توانایی کاربر را برای ارزیابی و قابل اطمینان بودن آن مختل کنند.

  تاثیر سازمانی: هوش مصنوعی مولد می‌تواند به طور قابل‌توجهی تاثیرات منفی‌ای بر نیروی کار و به‌ویژه گروه‌های خاص و جوامع محلی داشته باشد.

  اثرات اجتماعی و زیست‌محیطی: توسعه مدل‌های پایه ممکن است منجر به ایجاد پیامدهای اجتماعی و زیست محیطی مضری از جمله افزایش انتشار کربن شود   (برای مثال آموزش یک مدل هوش مصنوعی مولد نظیر مدل زبان بزرگ می‌تواند حدود ۳۱۵تن دی‌اکسیدکربن تولید کند)

  به‌کارگیری هوش مصنوعی مولد در کار

مدیران اجرایی باید به این نکته ضروری توجه داشته باشند که مسائل مالی و الزامات تکنیکی نباید مانع از ورودشان به هوش مصنوعی مولد شود. چرا که به تعویق انداختن آن در هر شکلش می‌تواند منجر به جاماندن از دیگر رقبا شود و هر مدیر اجرایی‌ای بنا به تشخیص خود باید دریابد که بهتر است تیمش کجا و چگونه از هوش مصنوعی مولد بهره گیرد.

بخشی از مدیران اجرایی ممکن است آن را به مثابه فرصتی جهت توسعه بازاریابی و فروش بیابند و برخی دیگر نیز ممکن است قدری دیرتر و در مقیاسی کوچک‌تر به این حوزه ورود یابند. پس از ورود به این حوزه نیز، مسیرهای فنی‌ای وجود دارند که متخصصان هوش مصنوعی برای اجرای استراتژی باید از آنها پیروی کنند. بسیاری از هوش‌های مصنوعی مولد در نرم‌افزاری که کارمندان پیش از آن نیز از آن استفاده می‌کردند؛ تعبیه می‌شوند. مثلا در سیستم‌های ایمیل، گزینه‌ای تعبیه می‌شود که می‌تواند پیش‌نویس ابتدایی یک پیام را بنویسد یا در نرم‌افزارهای مالی تعبیه شود و بتواند ویژگی‌های قابل‌توجه یک گزارش مالی را شرح دهد یا در سیستم‌های مدیریتی ابزار نصب شوند که بتواند پیشنهادهایی جهت تعاملی سازنده‌تر با مشتری ارائه دهد.

 بنابراین هوش مصنوعی مولد می‌تواند حتی در موارد خاص بسیار دگرگون‌کننده عمل کند. در این خصوص، با ذکر مثالی از حوزه مهندسی نرم‌افزار، بخش اول مقاله را به پایان می‌رسانیم. واضح است که بزرگ‌ترین بخش کار یک مهندس نرم‌افزار، کد‌نویسی است؛ فرآیندی بسیار فشرده که به آزمون و خطای گسترده و تحقیق در اسناد خصوصی و عمومی نیازمند است.

شرکتی را در نظر بگیرید که در آن به دلیل کمبود مهندس نرم‌افزار حجم زیادی از درخواست‌ها به تعویق افتاده است.

به منظور بالا بردن بهره‌وری کار مهندسان نرم‌افزار، این شرکت می‌تواند ابزاری مبتنی بر هوش مصنوعی را در قالب گزینه‌ای جدید به همان نرم‌افزار قبلی برنامه‌نویسان اضافه کند.  از این طریق فرصتی برای متخصصان نرم‌افزار فراهم می‌شود که کد نویسی راحت‌تری داشته باشند  و این به این معناست که مهندسان می‌توانند خواسته خود به زبان طبیعی را به شیوه‌ای نوشتاری توضیح دهند و در ادامه نیز، این مدل مجهز به هوش مصنوعی قادر خواهد بود بلوک‌های کدهای مختلفی را جهت انتخاب به مهندسان نرم‌افزار پیشنهاد دهد.

با اینکه هوش مصنوعی مولد نمی‌تواند جایگزین برنامه‌نویسان ماهر در حوزه نرم‌افزار شود اما تحقیقات نشان داده است که چنین ابزارهایی قابلیت این را دارند که سرعت برنامه‌نویسان را تا ۵۰‌درصد افزایش دهند؛ و در واقع این مهندسان ماهرتر هستند که می‌توانند سبب ارتقای بهره‌وری چنین ابزارهایی شوند و در حالی که چنین محصولی بدون نیاز به توسعه داخلی و با صرف هزینه ۱۰ تا ۳۰دلار برای هر کاربری در دسترس است؛ چرا مدیران اجرایی جهت ارتقای بهره‌وری تیم‌هایشان، ورود به چنین زمینه‌ای را به تعویق بیندازند؟!