با هوش مصنوعی ممکن شد
تشخیص ۱۰۰ درصدی اوتیسم با گرفتن عکس از چشم کودک
اخیرا محققان انگلیسی ابزارهایی غیرتهاجمی برای تشخیص سریع آسیب ابداع کردهاند و برای این منظور یک نور ایمن لیزر به شبکیه میتابانند. اکنون محققان کالج یونسی در کرهجنوبی با استفاده از تصاویر شبکیه که با الگوریتم هوش مصنوعی بررسی میشود، روشی برای تشخیص اختلال طیف اوتیسم (ASD) و علائم شدت آن در کودکان ابداع کردهاند.محققان ۹۵۸ شرکتکننده با میانگین سنی ۷.۸ سال را استخدام و عکس شبکیه آنها را ثبت کردند. به این ترتیب آنها در کل ۱۸۹۰ تصویر در اختیار داشتند. نیمی از این کودکان از قبل مبتلا به ASD تشخیص داده شده بودند و نیم دیگر شرکتکنندگان عضو گروه کنترل بودند. علائم شدت این بیماری با استفاده از «برنامه مشاهده تشخیصی اوتیسم» (Autism Diagnostic Observation Schedule) سنجیده شد.
یک الگوریتم یادگیری عمیق با استفاده از ۸۵ درصد تصاویر شبکیه و نتایج تستهای شدت علائم بیماری آموزش داده شد تا مدلهایی برای بررسی ASD و شدت علائم ASD بسازد. ۱۵ درصد تصاویر باقیمانده برای آزمایش دوباره آموزش داده شدند. محققان در این باره میگویند: مدلهای عملکردی نویدبخش در ایجاد تمایز بین ASD و TD(کودکان با رشد معمولی) با کمک عکسهای معمولی داشت که نشان میدهد تغییرات در شبکیه در افراد مبتلا به ASD احتمالا به عنوان نشانگر زیستی ارزش دارد. یافتههای ما نشان میدهد تصاویر شبکیه احتمالا اطلاعاتی اضافی درباره شدت علائم نیز دارند. هرچند به مطالعات بیشتری در این زمینه نیاز است، اما تحقیق پیشرو گامی مهم در توسعه ابزارهای بررسی ASD به شمار میرود و چالشهای اضطراری مانند عدم دسترسی به متخصص کودکان را برطرف میکند.